Blog post by Marco Altini We have just released our latest feature in HRV4Training Pro: half marathon and full marathon running time estimates. In this post we go over how these prediction models work. In particular, this work is an extension of our previously published analysis (see "Estimating running performance combining non-invasive physiological measurements and training patterns in free-living” which was accepted for publication at the 40th International Engineering in Medicine and Biology Conference, full text here, while another blog post explaining the paper can be found here). In the published work we built models able to estimate running performance (10 km time) using 2 years of real world data from more than 2000 individuals, including morning physiological measurements obtained using HRV4Training, workouts acquired from Strava and TrainingPeaks, anthropometrics and training patterns. What did we learn?We provided insights on the relationship between training and performance, including further evidence of the importance of training volume and a polarized training approach to improve performance. While no causal link can be established, as users did not participate in an intervention, it is of interest to determine the impact of features representative of training patterns as derived from workouts, for example training polarization, a hot topic these days. In our analysis, age, BMI, resting HR, speed to HR ratio and time spent at moderate HR intensity entered the model with a positive sign, meaning that a lower value for these predictors is associated with a faster 10 km. On the other hand, HRV (rMSSD), average distance and speed, percentage of workouts performed 5% faster or 5% slower than the average training entered the model with a negative coefficient. Thus, according to our dataset and analysis, a more polarized training regime, with a higher percentage of workouts preformed either faster or slower than the average workout, as well as a lower percentage of workouts performed at moderate HR intensity, is associated with improved performance. Lactate threshold estimation in HRV4Training Following our analysis, earlier this year we have released a new feature in HRV4Training, lactate threshold estimation (more on this at this link), basically turning around the modeling detailed in this post and published in the paper. In practical terms, the lactate or anaerobic threshold, is approximately the pace you should be able to hold for a distance between 10 and 15 km. This is the criteria used in HRV4Training, which should help you making sense of the app estimation. Intuitively, knowing your lactate threshold can help you defining pacing strategies for racing events between the 5 km and the half marathon (or longer, but in that case, other factors such as training volume start to play a more important role), as well as determining training pace for intervals and tempo runs. Some useful insights in this context are provided by Greg McMillan in this article, that I’d recommend checking out. Estimating running timeAs mentioned at the beginning of this article, we have now added new models to estimate half marathon and full marathon times, based on a similar analysis, and the following parameters:
You will see a different degree of confidence on the models, as we try to move away from ‘exact’ estimates, as there is no such a thing and all models include an error, to provide you with a range of most likely values that can help you, given your knowledge of your workouts and physical condition, getting a realistic understanding of what racing times could be possible based on the available data (R2 was above 0.85 for both models). This is what you see below as optimistic and pessimistic values. In addition, the models differ as the full marathon estimation model highly relies on the presence long runs among your workouts, an aspect often forgotten by other estimators, and which we believe is key to performance in long distance events. Below you can see another example, we hope you’ll find the new feature useful.
Comments are closed.
|
Register to the mailing list
and try the HRV4Training app! This blog is curated by
Marco Altini, founder of HRV4Training Blog Index The Ultimate Guide to HRV 1: Measurement setup 2: Interpreting your data 3: Case studies and practical examples How To 1. Intro to HRV 2. How to use HRV, the basics 3. HRV guided training 4. HRV and training load 5. HRV, strength & power 6. Overview in HRV4Training Pro 7. HRV in team sports HRV Measurements Best Practices 1. Context & Time of the Day 2. Duration 3. Paced breathing 4. Orthostatic Test 5. Slides HRV overview 6. Normal values and historical data 7. HRV features Data Analysis 1a. Acute Changes in HRV (individual level) 1b. Acute Changes in HRV (population level) 1c. Acute Changes in HRV & measurement consistency 1d. Acute Changes in HRV in endurance and power sports 2a. Interpreting HRV Trends 2b. HRV Baseline Trends & CV 3. Tags & Correlations 4. Ectopic beats & motion artifacts 5. HRV4Training Insights 6. HRV4Training & Sports Science 7. HRV & fitness / training load 8. HRV & performance 9. VO2max models 10. Repeated HRV measurements 11. VO2max and performance 12. HR, HRV and performance 13. Training intensity & performance 14. Publication: VO2max & running performance 15. Estimating running performance 16. Coefficient of Variation 17. More on CV and the big picture 18. Case study marathon training 19. Case study injury and lifestyle stress 20. HRV and menstrual cycle 21. Cardiac decoupling 22. FTP, lactate threshold, half and full marathon time estimates 23. Training Monotony Camera & Sensors 1. ECG vs Polar & Mio Alpha 2a. Camera vs Polar 2b. Camera vs Polar iOS10 2c. iPhone 7+ vs Polar 2d. Comparison of PPG sensors 3. Camera measurement guidelines 4. Validation paper 5. Android camera vs Chest strap 6. Scosche Rhythm24 7. Apple Watch 8. CorSense 9. Samsung Galaxy App Features 1. Features and Recovery Points 2. Daily advice 3. HRV4Training insights 4. Sleep tracking 5. Training load analysis 6a. Integration with Strava 6b. Integration with TrainingPeaks 6c. Integration with SportTracks 6d. Integration with Genetrainer 6e. Integration with Apple Health 6f. Integration with Todays Plan 7. Acute HRV changes by sport 8. Remote tags in HRV4T Coach 9. VO2max Estimation 10. Acute stressors analysis 11. Training Polarization 12. Lactate Threshold Estimation 13. Functional Threshold Power(FTP) Estimation for cyclists 14. Aerobic Endurance analysis 15. Intervals Analysis 16. Training Planning 17. Integration with Oura 18. Aerobic efficiency and cardiac decoupling Other 1. HRV normal values 2. HRV normalization by HR 3. HRV 101 |