Blog post by Marco Altini We have released a new feature in HRV4Training, lactate threshold estimation. In this post, we go over the background, cover what we mean as lactate threshold, how you can use this feature to plan and track your trainings and progress and also provide additional details about the underlying algorithms that we developed to estimate lactate threshold and its accuracy, as well as some of the current limitations. Lactate threshold estimation in HRV4Training and actual 10 km race time. What's the lactate threshold anyway?You'll see in this section we will be using interchangeably the terms lactate and anaerobic threshold - for the purpose of this blog post, they are the same parameter. Borrowing from Svedahl et al. [1]: the anaerobic threshold is defined as the highest sustained intensity of exercise for which measurement of oxygen uptake can account for the entire energy requirement. ... There are many reasons for trying to quantify this intensity of exercise, including assessment of cardiovascular or pulmonary health, evaluation of training programs, and categorization of the intensity of exercise as mild, moderate, or intense. As Buchheit et al. put it [2], although there is still an important debate on its theoretical basis, the anaerobic threshold is interesting because it has been advanced to be a better marker of endurance performance than VO2max. What does this mean in practical terms?In practical terms, the lactate or anaerobic threshold, is approximately the pace you should be able to hold for a distance between 10 and 15 km. This is the criteria used in HRV4Training, which should help you making sense of the app estimation. How can you use it?Intuitively, knowing your lactate threshold can help you defining pacing strategies for racing events between the 5 km and the half marathon (or longer, but in that case, other factors such as training volume start to play a more important role), as well as determining training pace for intervals and tempo runs. Some useful insights in this context are provided by Greg McMillan in this article, that I'd recommend checking out. How do we compute it?To compute your lactate threshold, we turned around the problem and worked on machine learning models to estimate running performance, in particular 10 km racing time, using the following set of parameters:
What data do I need?You need to be a runner with at least 15 workouts, including heart rate data, in the past 45 days. To improve this feature, we re-designed completely the underlying data storage for workouts synched from Strava or TrainingPeaks. In particular, while you will still see aggregates in the History page, the app will discriminate between workouts (and racing events) split into multiple parts (for example warmup, workout or race, cooldown), so that more accurate estimates can be provided. What's in the app?The app will show you the estimated range based on your past 45 days of data, see for example above the range and average value displayed for my recent data. You will also see the recent trend, in case your threshold is lowering, hence you are getting faster, or the other way around. The feature will be available for both iOS and Android, and also visible in HRV4Training Coach in case you coach runners. Accuracy and known limitationsOur work is currently under review and hopefully we will be able to share more in the next few weeks, as we finalize it for publication. For the development of our models we used real life data from more than 2000 HRV4Training users that used the app for several months, and linked the app to either Strava or TrainingPeaks. Using this unique dataset of morning physiological measurements, workouts, and higher level features extracted as longitudinal data related to training patterns for several months was available, we could build models able to predict lactate threshold with a 14 seconds/km average error, which is about 40% better than when using only anthropometrics data and training history (more details will follow as soon as the paper is published). Relation between predicted and estimated lactate threshold and Bland-Altman plot for more than 2000 users that were part of this analysis. These are cross-validated results, meaning that no data used for model building was used for model validation. LimitationsWe do have several checks in place to make sure outliers don't get in the way, however under certain circumstances the estimate might be underestimated. In particular, underestimation can result if you train mostly on trails and do very little speed work. A few hard sessions per month should be sufficient to provide accurate estimates even for trail runners. Final notesWe talked elsewhere (see this article for example) about how we strongly believe in the ability to further improve our understanding of complex relations between physiology and performance through large-scale research carried out in real-life. Our journey started by developing a validated and practical tool like HRV4Training, and releasing it in the hands of thousands of individuals, so that research can be carried out at a scale that is not possible in regular laboratory studies. By relying on this approach, we were able to feed our findings back to the community. We have been developing new features (for example VO2max estimation for cyclists or the current lactate threshold estimation) that hopefully will help you better track and plan your trainings, and eventually lead to improved performance. Thank you everyone for joining us and making the data-driven development of this new feature possible. References[1] Svedahl, K. and MacIntosh, B.R., 2003. Anaerobic threshold: the concept and methods of measurement. Canadian journal of applied physiology, 28(2), pp.299-323.
[2] Buchheit, M., Solano, R. and Millet, G.P., 2007. Heart-rate deflection point and the second heart-rate variability threshold during running exercise in trained boys. Pediatric Exercise Science, 19(2), pp.192-204. Comments are closed.
|
Register to the mailing list
and try the HRV4Training app! This blog is curated by
Marco Altini, founder of HRV4Training Blog Index The Ultimate Guide to HRV 1: Measurement setup 2: Interpreting your data 3: Case studies and practical examples How To 1. Intro to HRV 2. How to use HRV, the basics 3. HRV guided training 4. HRV and training load 5. HRV, strength & power 6. Overview in HRV4Training Pro 7. HRV in team sports HRV Measurements Best Practices 1. Context & Time of the Day 2. Duration 3. Paced breathing 4. Orthostatic Test 5. Slides HRV overview 6. Normal values and historical data 7. HRV features Data Analysis 1a. Acute Changes in HRV (individual level) 1b. Acute Changes in HRV (population level) 1c. Acute Changes in HRV & measurement consistency 1d. Acute Changes in HRV in endurance and power sports 2a. Interpreting HRV Trends 2b. HRV Baseline Trends & CV 3. Tags & Correlations 4. Ectopic beats & motion artifacts 5. HRV4Training Insights 6. HRV4Training & Sports Science 7. HRV & fitness / training load 8. HRV & performance 9. VO2max models 10. Repeated HRV measurements 11. VO2max and performance 12. HR, HRV and performance 13. Training intensity & performance 14. Publication: VO2max & running performance 15. Estimating running performance 16. Coefficient of Variation 17. More on CV and the big picture 18. Case study marathon training 19. Case study injury and lifestyle stress 20. HRV and menstrual cycle 21. Cardiac decoupling 22. FTP, lactate threshold, half and full marathon time estimates 23. Training Monotony Camera & Sensors 1. ECG vs Polar & Mio Alpha 2a. Camera vs Polar 2b. Camera vs Polar iOS10 2c. iPhone 7+ vs Polar 2d. Comparison of PPG sensors 3. Camera measurement guidelines 4. Validation paper 5. Android camera vs Chest strap 6. Scosche Rhythm24 7. Apple Watch 8. CorSense 9. Samsung Galaxy App Features 1. Features and Recovery Points 2. Daily advice 3. HRV4Training insights 4. Sleep tracking 5. Training load analysis 6a. Integration with Strava 6b. Integration with TrainingPeaks 6c. Integration with SportTracks 6d. Integration with Genetrainer 6e. Integration with Apple Health 6f. Integration with Todays Plan 7. Acute HRV changes by sport 8. Remote tags in HRV4T Coach 9. VO2max Estimation 10. Acute stressors analysis 11. Training Polarization 12. Lactate Threshold Estimation 13. Functional Threshold Power(FTP) Estimation for cyclists 14. Aerobic Endurance analysis 15. Intervals Analysis 16. Training Planning 17. Integration with Oura 18. Aerobic efficiency and cardiac decoupling Other 1. HRV normal values 2. HRV normalization by HR 3. HRV 101 |