Blog post by Marco Altini Quick announcement as our third paper, titled "Relation Between Estimated Cardiorespiratory Fitness and Running Performance in Free-Living: an Analysis of HRV4Training Data" was accepted for publication at the the International Conference on Biomedical and Health Informatics (BHI 2017). The analysis discussed in this paper is similar to the one recently highlighted on this blog on VO2max and running performance, showing how estimated VO2max in the app is highly correlated with real life running performance for running distances between the 10km and full marathon, and therefore can be used as an effective proxy to running performance without the need for laboratory tests - at the population level. Relation between running performance (racing duration for distances between the 10 km and the full marathon) and estimated V O2max for data collected using the HRV4Training application in unsupervised free-living settings. A moderate to strong inverse relationship is shown independently of running distance. Distributions of V O2max values and running performance are also shown.
In this work, we first built laboratory-based VO2max estimation models, including reference VO2max data collected using indirect calorimetry, and then deployed our models in the HRV4Training app. More than 500 users linked the app to Strava and used the VO2max estimation models while running distances between the 10km and the full marathon over a period of 1 to 8 months, hence creating a unique dataset on which to investigate the relation between estimated VO2max and running performance. Big thank you to everyone that contributed to this research and helped moving the field forward. We will be presenting this work next month. We got extremely positive feedback and an invitation to write a follow up journal paper, so we will probably provide more details later on as we keep adding data and investigate the relation between real life performance and estimated fitness. For the ones interested in reading the paper, you can find the full text at this link on Research Gate and follow our updates on the HRV4Training Project page.
1 Comment
Mikki
1/12/2017 12:35:10 pm
Nice work and always great to receive your informative updates 👍
Reply
Your comment will be posted after it is approved.
Leave a Reply. |
Register to the mailing list
and try the HRV4Training app! This blog is curated by
Marco Altini, founder of HRV4Training Blog Index The Ultimate Guide to HRV 1: Measurement setup 2: Interpreting your data 3: Case studies and practical examples How To 1. Intro to HRV 2. How to use HRV, the basics 3. HRV guided training 4. HRV and training load 5. HRV, strength & power 6. Overview in HRV4Training Pro 7. HRV in team sports HRV Measurements Best Practices 1. Context & Time of the Day 2. Duration 3. Paced breathing 4. Orthostatic Test 5. Slides HRV overview 6. Normal values and historical data 7. HRV features Data Analysis 1a. Acute Changes in HRV (individual level) 1b. Acute Changes in HRV (population level) 1c. Acute Changes in HRV & measurement consistency 1d. Acute Changes in HRV in endurance and power sports 2a. Interpreting HRV Trends 2b. HRV Baseline Trends & CV 3. Tags & Correlations 4. Ectopic beats & motion artifacts 5. HRV4Training Insights 6. HRV4Training & Sports Science 7. HRV & fitness / training load 8. HRV & performance 9. VO2max models 10. Repeated HRV measurements 11. VO2max and performance 12. HR, HRV and performance 13. Training intensity & performance 14. Publication: VO2max & running performance 15. Estimating running performance 16. Coefficient of Variation 17. More on CV and the big picture 18. Case study marathon training 19. Case study injury and lifestyle stress 20. HRV and menstrual cycle 21. Cardiac decoupling 22. FTP, lactate threshold, half and full marathon time estimates 23. Training Monotony Camera & Sensors 1. ECG vs Polar & Mio Alpha 2a. Camera vs Polar 2b. Camera vs Polar iOS10 2c. iPhone 7+ vs Polar 2d. Comparison of PPG sensors 3. Camera measurement guidelines 4. Validation paper 5. Android camera vs Chest strap 6. Scosche Rhythm24 7. Apple Watch 8. CorSense 9. Samsung Galaxy App Features 1. Features and Recovery Points 2. Daily advice 3. HRV4Training insights 4. Sleep tracking 5. Training load analysis 6a. Integration with Strava 6b. Integration with TrainingPeaks 6c. Integration with SportTracks 6d. Integration with Genetrainer 6e. Integration with Apple Health 6f. Integration with Todays Plan 7. Acute HRV changes by sport 8. Remote tags in HRV4T Coach 9. VO2max Estimation 10. Acute stressors analysis 11. Training Polarization 12. Lactate Threshold Estimation 13. Functional Threshold Power(FTP) Estimation for cyclists 14. Aerobic Endurance analysis 15. Intervals Analysis 16. Training Planning 17. Integration with Oura 18. Aerobic efficiency and cardiac decoupling Other 1. HRV normal values 2. HRV normalization by HR 3. HRV 101 |