Blog post by Marco Altini Part 4 of our Ultimate Guide to Heart Rate Variability is all about common misconceptions (full post coming soon). In this post, I am covering an important misconception on HRV and subjective data. Misconception 7: HRV is less useful than subjective data to capture how an athlete responds to trainingThis misconception is mostly deriving from a paper that a few years back stated that subjective metrics are better than objective ones in monitoring athlete training response.
But let’s look at what was actually analyzed in the paper. The authors looked at how training load related to both subjective and objective metrics, hence according to the paper, the reference to determine if a metric is a valid metric, is how it correlates to training load. In my opinion, the whole assumption that you should find the metric that “correlates the most” with training load, makes very little sense. Why? Because you are already measuring training load, so what is the point of having another metric that gives you the exact same information? Well, none. By definition, if a metric is perfectly correlated to training load, then it is a useless metric, as it does not add any information to the training and recovery equation (but ironically, it would have been interpreted by the study as the best metric). I’ve already discussed before how the notion that increased load should trigger a reduction in HRV is very simplistic. As a matter of fact, we have seen we can have stable or increased HRV when increasing load (a sign of positive adaptation) as well as reduced HRV with low load because of other stressors (travel, work, etc.). HRV tells you how you are responding and coping with stress, and you can use that information as part of your decision-making process (you can find many case studies here). Finally, don’t get me wrong, it is fairly obvious that subjective metrics are also extremely important. This is why we include a questionnaire after the measurement so that you can take a minute to pause, and self-assess how you are feeling subjectively, a key part of the process. A smart coach, educator or athlete, understands that training load, HRV, and subjective metrics all provide important information that needs to be integrated daily, to decide the better course of action. There is no winner between objective and subjective metrics, they all serve a purpose. Isn't that obvious? Comments are closed.
|
Register to the mailing list
and try the HRV4Training app! This blog is curated by
Marco Altini, founder of HRV4Training Blog Index The Ultimate Guide to HRV 1: Measurement setup 2: Interpreting your data 3: Case studies and practical examples How To 1. Intro to HRV 2. How to use HRV, the basics 3. HRV guided training 4. HRV and training load 5. HRV, strength & power 6. Overview in HRV4Training Pro 7. HRV in team sports HRV Measurements Best Practices 1. Context & Time of the Day 2. Duration 3. Paced breathing 4. Orthostatic Test 5. Slides HRV overview 6. Normal values and historical data 7. HRV features Data Analysis 1a. Acute Changes in HRV (individual level) 1b. Acute Changes in HRV (population level) 1c. Acute Changes in HRV & measurement consistency 1d. Acute Changes in HRV in endurance and power sports 2a. Interpreting HRV Trends 2b. HRV Baseline Trends & CV 3. Tags & Correlations 4. Ectopic beats & motion artifacts 5. HRV4Training Insights 6. HRV4Training & Sports Science 7. HRV & fitness / training load 8. HRV & performance 9. VO2max models 10. Repeated HRV measurements 11. VO2max and performance 12. HR, HRV and performance 13. Training intensity & performance 14. Publication: VO2max & running performance 15. Estimating running performance 16. Coefficient of Variation 17. More on CV and the big picture 18. Case study marathon training 19. Case study injury and lifestyle stress 20. HRV and menstrual cycle 21. Cardiac decoupling 22. FTP, lactate threshold, half and full marathon time estimates 23. Training Monotony Camera & Sensors 1. ECG vs Polar & Mio Alpha 2a. Camera vs Polar 2b. Camera vs Polar iOS10 2c. iPhone 7+ vs Polar 2d. Comparison of PPG sensors 3. Camera measurement guidelines 4. Validation paper 5. Android camera vs Chest strap 6. Scosche Rhythm24 7. Apple Watch 8. CorSense 9. Samsung Galaxy App Features 1. Features and Recovery Points 2. Daily advice 3. HRV4Training insights 4. Sleep tracking 5. Training load analysis 6a. Integration with Strava 6b. Integration with TrainingPeaks 6c. Integration with SportTracks 6d. Integration with Genetrainer 6e. Integration with Apple Health 6f. Integration with Todays Plan 7. Acute HRV changes by sport 8. Remote tags in HRV4T Coach 9. VO2max Estimation 10. Acute stressors analysis 11. Training Polarization 12. Lactate Threshold Estimation 13. Functional Threshold Power(FTP) Estimation for cyclists 14. Aerobic Endurance analysis 15. Intervals Analysis 16. Training Planning 17. Integration with Oura 18. Aerobic efficiency and cardiac decoupling Other 1. HRV normal values 2. HRV normalization by HR 3. HRV 101 |