We have partnered with the Biomedical department of the University of Milan to provide free Heart Rate Variability apps in the context of a new study investigating the effect of home isolation on the cardiac autonomous nervous system. Prolonged isolation studies during quarantines have focused mainly on the clinical effects of isolation, reporting emotional disorders, irritability, insomnia, poor concentration, deterioration of working capacity, stress symptoms and decision-making skills. The reduction in physical activity seems to contribute to the establishment of these dynamics. The purpose of this project is instead to monitor the psycho-physiological impact of home isolation that is occurring in Italy as a consequence of the general lockdown aimed at containing the pandemic spread of covid-19. Psychological monitoring will focus, through the remote administration of validated questionnaires, on sleep disorders (Pittsburg Sleep Quality, PSQI), affective and emotional states (UCLA Loneliness scale, Profile of Mood States, POMS), on trait and state anxiety (State-Trait anxiety Inventory, STAI) and on the level of physical activity (International Physical Activity Questionaire, IPAQ). Physiological monitoring will evaluate the modulation of heart rate by the autonomic nervous system (HRV), as measured using the Camera HRV app, so that questionnaires data and objective physiological stress levels can both be analyzed. We would like to thank professor Giampiero Merati of the University of Milan for involving us in this project, and we hope our tools we'll be helpful to gather objective data on ANS activity. In the meantime, some N = 1 (well, 2) data of our own poor response to 6 weeks of self-isolation, showing how the baseline is now either below normal values or close to the lower end, a clear sign of significant stress: Take care and stay safe
Comments are closed.
|
Register to the mailing list
and try the HRV4Training app! This blog is curated by
Marco Altini, founder of HRV4Training Blog Index The Ultimate Guide to HRV 1: Measurement setup 2: Interpreting your data 3: Case studies and practical examples How To 1. Intro to HRV 2. How to use HRV, the basics 3. HRV guided training 4. HRV and training load 5. HRV, strength & power 6. Overview in HRV4Training Pro 7. HRV in team sports HRV Measurements Best Practices 1. Context & Time of the Day 2. Duration 3. Paced breathing 4. Orthostatic Test 5. Slides HRV overview 6. Normal values and historical data 7. HRV features Data Analysis 1a. Acute Changes in HRV (individual level) 1b. Acute Changes in HRV (population level) 1c. Acute Changes in HRV & measurement consistency 1d. Acute Changes in HRV in endurance and power sports 2a. Interpreting HRV Trends 2b. HRV Baseline Trends & CV 3. Tags & Correlations 4. Ectopic beats & motion artifacts 5. HRV4Training Insights 6. HRV4Training & Sports Science 7. HRV & fitness / training load 8. HRV & performance 9. VO2max models 10. Repeated HRV measurements 11. VO2max and performance 12. HR, HRV and performance 13. Training intensity & performance 14. Publication: VO2max & running performance 15. Estimating running performance 16. Coefficient of Variation 17. More on CV and the big picture 18. Case study marathon training 19. Case study injury and lifestyle stress 20. HRV and menstrual cycle 21. Cardiac decoupling 22. FTP, lactate threshold, half and full marathon time estimates 23. Training Monotony Camera & Sensors 1. ECG vs Polar & Mio Alpha 2a. Camera vs Polar 2b. Camera vs Polar iOS10 2c. iPhone 7+ vs Polar 2d. Comparison of PPG sensors 3. Camera measurement guidelines 4. Validation paper 5. Android camera vs Chest strap 6. Scosche Rhythm24 7. Apple Watch 8. CorSense 9. Samsung Galaxy App Features 1. Features and Recovery Points 2. Daily advice 3. HRV4Training insights 4. Sleep tracking 5. Training load analysis 6a. Integration with Strava 6b. Integration with TrainingPeaks 6c. Integration with SportTracks 6d. Integration with Genetrainer 6e. Integration with Apple Health 6f. Integration with Todays Plan 7. Acute HRV changes by sport 8. Remote tags in HRV4T Coach 9. VO2max Estimation 10. Acute stressors analysis 11. Training Polarization 12. Lactate Threshold Estimation 13. Functional Threshold Power(FTP) Estimation for cyclists 14. Aerobic Endurance analysis 15. Intervals Analysis 16. Training Planning 17. Integration with Oura 18. Aerobic efficiency and cardiac decoupling Other 1. HRV normal values 2. HRV normalization by HR 3. HRV 101 |