Blog post by Marco Altini We have released a new feature in HRV4Training Pro: Training Monotony. In case you want to jump right in, and check out our latest feature, simply login at HRV4T.com with your HRV4Training credentials, then navigate to Insights / Training Load Analysis As a coach, you can access these estimates for all your athletes from the Coach Panel. Overview of the Training Load Analysis in HRV4Training Pro. What is it?Training monotony refers to the similarity of daily training. In practical terms, this is a statistical representation of how much your training stimulus is varying over time. As in all other analysis included under our training load analysis, the first thing to do is to pick a training load metric, or training impulse. This can be relative effort, TSS, RPE, RPE x Duration or any other parameter that is relevant in your sport. Once you have picked this parameter, HRV4Training Pro will analyze on a weekly basis, to determine training monotony. Freshness, injury risk and monotony are computed from training impulse and can be representative of different processes. Freshness is about recovery and being race ready, injury risk compares your recent and habitual load to determine if you have increased load too much with respect to what you are used to, and therefore increased injury risk. Monotony concerns variation in training, with the idea that optimal performance is associated to higher variation. How do you use it?In general, low monotony (a value below 1.5 for example) is preferable so that different training adaptations can be triggered, while allowing for sufficient recovery to the body. Low monotony is normally associated to a polarized training and other periodization methods alternating high and low intensity workouts. On the other hand, a high value for training monotony indicates that the training program might be ineffective and lead to stagnation, or lack of improvement. Hence, if your score tends to be higher, it might be time to try something different. Here is for example a month of workouts of varying intensity and duration, resulting in very different relative efforts (the training impulse metric available in Strava and used for this example): You can see how training monotony is indeed very low: On the other hand here we have a week with very similar workouts (second row in particular): Which corresponds to the yellow spike in monotony below, an indication that the stimulus recently has been always quite similar on a day to day basis, which might be unproductive for performance: Needless to say, this is an oversimplification of the many processes affecting human performance. However, several authors have found that lower monotony is linked to higher performance, and therefore we hope this extra data point that can be informative and help you critically analyze your progress. Alright, that's all for this update. Enjoy. Useful resources:
Comments are closed.
|
Register to the mailing list
and try the HRV4Training app! This blog is curated by
Marco Altini, founder of HRV4Training Blog Index The Ultimate Guide to HRV 1: Measurement setup 2: Interpreting your data 3: Case studies and practical examples How To 1. Intro to HRV 2. How to use HRV, the basics 3. HRV guided training 4. HRV and training load 5. HRV, strength & power 6. Overview in HRV4Training Pro 7. HRV in team sports HRV Measurements Best Practices 1. Context & Time of the Day 2. Duration 3. Paced breathing 4. Orthostatic Test 5. Slides HRV overview 6. Normal values and historical data 7. HRV features Data Analysis 1a. Acute Changes in HRV (individual level) 1b. Acute Changes in HRV (population level) 1c. Acute Changes in HRV & measurement consistency 1d. Acute Changes in HRV in endurance and power sports 2a. Interpreting HRV Trends 2b. HRV Baseline Trends & CV 3. Tags & Correlations 4. Ectopic beats & motion artifacts 5. HRV4Training Insights 6. HRV4Training & Sports Science 7. HRV & fitness / training load 8. HRV & performance 9. VO2max models 10. Repeated HRV measurements 11. VO2max and performance 12. HR, HRV and performance 13. Training intensity & performance 14. Publication: VO2max & running performance 15. Estimating running performance 16. Coefficient of Variation 17. More on CV and the big picture 18. Case study marathon training 19. Case study injury and lifestyle stress 20. HRV and menstrual cycle 21. Cardiac decoupling 22. FTP, lactate threshold, half and full marathon time estimates 23. Training Monotony Camera & Sensors 1. ECG vs Polar & Mio Alpha 2a. Camera vs Polar 2b. Camera vs Polar iOS10 2c. iPhone 7+ vs Polar 2d. Comparison of PPG sensors 3. Camera measurement guidelines 4. Validation paper 5. Android camera vs Chest strap 6. Scosche Rhythm24 7. Apple Watch 8. CorSense 9. Samsung Galaxy App Features 1. Features and Recovery Points 2. Daily advice 3. HRV4Training insights 4. Sleep tracking 5. Training load analysis 6a. Integration with Strava 6b. Integration with TrainingPeaks 6c. Integration with SportTracks 6d. Integration with Genetrainer 6e. Integration with Apple Health 6f. Integration with Todays Plan 7. Acute HRV changes by sport 8. Remote tags in HRV4T Coach 9. VO2max Estimation 10. Acute stressors analysis 11. Training Polarization 12. Lactate Threshold Estimation 13. Functional Threshold Power(FTP) Estimation for cyclists 14. Aerobic Endurance analysis 15. Intervals Analysis 16. Training Planning 17. Integration with Oura 18. Aerobic efficiency and cardiac decoupling Other 1. HRV normal values 2. HRV normalization by HR 3. HRV 101 |