Blog post by Marco Altini Next week Apple will host their usual annual event in which they will unveil their new iPhone and also a release date for iOS10. With each new iOS version come a few challenges for developers, as some of the underlying mechanisms in the operating system might change. On our side, the main concern is always the same: will we be able to use the camera-based algorithms and maintain a high quality app which can effectively replace an ECG or chest strap? Short answer: Yes, while a few things changed, it all works the same and the camera based algorithms are as reliable under iOS10. Long answer: check out the data below for a few examples similar to the ones we have shown in the past during our clinical validations. The last check we will have to run will be on the new iPhone 7, to make sure that also on new hardware everything works the same. However, for anyone with an iphone 5 or 6, we can already confirm that HRV4Training & the camera based algorithms won't be affected. Camera vs Polar H7The setup for these tests is always the same we use when we are not at the lab. We have a custom app that records PPG and Bluetooth data at the same time, and also computes already RR intervals for the camera based algorithms, storing them to file together with the RR intervals sent by the chest strap. You can see a screenshot of the app here. The only disclaimer here is that as the two system have to run together, for synchronization reasons, we might mess up the camera data a little. Hence, this is a worst case scenario analysis. The reason is that the bluetooth radio interrupts the camera every time we receive a packet, so every second, and this operation while necessary for synchronization, is not ideal as all the camera does is extremely time-sensitive. We always validated things this way and results turned out very good, so for now this will do. We will look at three segments, one simply following a 10 breaths/minute breathing rate for 3 minutes, and other two alternating self paced breathing and deep breathing. This way we will be able to cover a decent range of heart rates and rMSSD, as well as clearly see breathing effects on RR modulation (RSA), so that RR intervals shorten when breathing in, and get longer when breathing out. Paced breathing, 10 breaths/minThe two time series of RR intervals shown below are very close, with a small artifact across the 1 minute vertical line, which is then handled by the artifact correction (as you can see from the overall rMSSD, which is only 1ms apart, considering that repeated measures can differ by up to 5-20ms, and synchronization here is not perfect, there is no difference between the two methods). Alternating self-paced breathing and deep breathingThe two plots below show both a combination of self-paced breathing and deep breathing. We can clearly see the swings in RR intervals due to paced breathing, as the effect of RSA is much stronger. rMSSD is once again only 3 ms apart. Second segment, with similar considerations (effect of RSA/deep breathing): Minute by minute rMSSD & heart rateVisually we can already see there is a very strong correlation between RR intervals captured between the two methods in all plots above, however correlation is not necessarily a good metric in this case, as rMSSD is very time sensitive and we need to make sure that RR intervals are not only correlated, but actually matching very closely what we get from our chest strap. I computed already rMSSD over the entire segment and printed it in the plot above (see the titles), where we can see they are indeed the same across conditions. However, I've also split each segment above in 1 minute windows, as most users use 1 minute measurements, to compare also minute by minute data. This way we can also see how the algorithms perform on different subsets of the signals, where HRV differs a lot due to breathing effects. Below you can see both rMSSD and heart rate for minute by minute data, as collected by the camera and Polar H7 on iOS 10: Results are very good even on a minute by minute basis, on a decent rMSSD range (45 to 120ms). This is a preliminary analysis, but everything seems very much in line with what we reported in the past. Other minor changesNot much else has changed in iOS10 for what concerns the current features in HRV4Training, with the main issues being some extra information we need to provide in order to write to the Health app. Make sure to keep your app up to date!
0 Comments
Your comment will be posted after it is approved.
Leave a Reply. |
Register to the mailing list
and try the HRV4Training app! This blog is curated by
Marco Altini, founder of HRV4Training Blog Index The Ultimate Guide to HRV 1: Measurement setup 2: Interpreting your data 3: Case studies and practical examples How To 1. Intro to HRV 2. How to use HRV, the basics 3. HRV guided training 4. HRV and training load 5. HRV, strength & power 6. Overview in HRV4Training Pro 7. HRV in team sports HRV Measurements Best Practices 1. Context & Time of the Day 2. Duration 3. Paced breathing 4. Orthostatic Test 5. Slides HRV overview 6. Normal values and historical data 7. HRV features Data Analysis 1a. Acute Changes in HRV (individual level) 1b. Acute Changes in HRV (population level) 1c. Acute Changes in HRV & measurement consistency 1d. Acute Changes in HRV in endurance and power sports 2a. Interpreting HRV Trends 2b. HRV Baseline Trends & CV 3. Tags & Correlations 4. Ectopic beats & motion artifacts 5. HRV4Training Insights 6. HRV4Training & Sports Science 7. HRV & fitness / training load 8. HRV & performance 9. VO2max models 10. Repeated HRV measurements 11. VO2max and performance 12. HR, HRV and performance 13. Training intensity & performance 14. Publication: VO2max & running performance 15. Estimating running performance 16. Coefficient of Variation 17. More on CV and the big picture 18. Case study marathon training 19. Case study injury and lifestyle stress 20. HRV and menstrual cycle 21. Cardiac decoupling 22. FTP, lactate threshold, half and full marathon time estimates 23. Training Monotony Camera & Sensors 1. ECG vs Polar & Mio Alpha 2a. Camera vs Polar 2b. Camera vs Polar iOS10 2c. iPhone 7+ vs Polar 2d. Comparison of PPG sensors 3. Camera measurement guidelines 4. Validation paper 5. Android camera vs Chest strap 6. Scosche Rhythm24 7. Apple Watch 8. CorSense 9. Samsung Galaxy App Features 1. Features and Recovery Points 2. Daily advice 3. HRV4Training insights 4. Sleep tracking 5. Training load analysis 6a. Integration with Strava 6b. Integration with TrainingPeaks 6c. Integration with SportTracks 6d. Integration with Genetrainer 6e. Integration with Apple Health 6f. Integration with Todays Plan 7. Acute HRV changes by sport 8. Remote tags in HRV4T Coach 9. VO2max Estimation 10. Acute stressors analysis 11. Training Polarization 12. Lactate Threshold Estimation 13. Functional Threshold Power(FTP) Estimation for cyclists 14. Aerobic Endurance analysis 15. Intervals Analysis 16. Training Planning 17. Integration with Oura 18. Aerobic efficiency and cardiac decoupling Other 1. HRV normal values 2. HRV normalization by HR 3. HRV 101 |