We have just released an improvement in HRV4Training Pro that lets you easily identify periods of significantly higher or lower values in the subjective tags you are tracking with HRV4Training. In particular, the update adds normal values to the plots under the Overview page. The normal values represent the expected value for a certain parameter, given the past two months of historical data. This means that any values outside of this range will be easy to spot (for example days in which you slept much less than normal), and most importantly, you will be able to easily see when your baseline tag (7 days moving average) is outside of your normal values, highlighting how some major change is occurring. Without normal values, it can be difficult to understand if things are just fluctuating in a trivial way, or if there is a larger change that we should be more cautious about. Let's look at a few examples. Below is the data from an athlete that has been prioritizing sleep quality, and we can see that despite some normal variation and a few data points that are particularly high or low (in this case associated to traveling), the baseline never gets outside of normal values, hence confirming that sleep is going well and should not be a major issue or the cause of any significant changes in baseline physiology (e.g. changes in HRV): Sleep quality is rather stable despite some variability Below is another example where we look at muscle soreness during marathon training, we can see some peaks here and there, followed by periods of recovery as we alternate long and easy runs, as well as the major impact of the race towards the end, and how long it took subjectively to go back to normal: Muscle soreness during marathon training And finally, here is a complete example where we can look at changes in resting physiology (HRV), training load and subjectively annotate lifestyle stress, during 2 months that include a few business trips (color coded in the first plot), periods of higher lifestyle stress (due to work and traveling, as shown in the last plot), and marathon training (plus marathon day, the peak in acute load towards the end of the second plot). Using the latest visualization in Pro, it is easy to see when lifestyle stress was much higher than normal for this person, and how only the combination of high load (e.g. the marathon) and high stress brought HRV below normal values, showing that we had significant stress on the body (and staying in that condition for several days, with a difficulty to getting back to homeostasis quickly). On the other hand, periods with high stress earlier where managed better, for example by reducing training load: Overview page in HRV4Training Pro. HRV, training load and lifestyle stress are plotted during marathon preparation (and race day). This case study above shows what we know very well already, stress is cumulative and we cannot isolate training and lifestyle stress or think that training is not affected by everything else going on at any given moment in our professional or personal life.
Yet, a simple marker such as HRV, measured in a well defined context (first thing in the morning while in a rested state), can capture stress deriving from all sources and help us make meaningful adjustments to maintain things in check. We hope you'll enjoy the latest update. If you have an HRV4Training account, you can try Pro for free by logging in here. Comments are closed.
|
Register to the mailing list
and try the HRV4Training app! This blog is curated by
Marco Altini, founder of HRV4Training Blog Index The Ultimate Guide to HRV 1: Measurement setup 2: Interpreting your data 3: Case studies and practical examples How To 1. Intro to HRV 2. How to use HRV, the basics 3. HRV guided training 4. HRV and training load 5. HRV, strength & power 6. Overview in HRV4Training Pro 7. HRV in team sports HRV Measurements Best Practices 1. Context & Time of the Day 2. Duration 3. Paced breathing 4. Orthostatic Test 5. Slides HRV overview 6. Normal values and historical data 7. HRV features Data Analysis 1a. Acute Changes in HRV (individual level) 1b. Acute Changes in HRV (population level) 1c. Acute Changes in HRV & measurement consistency 1d. Acute Changes in HRV in endurance and power sports 2a. Interpreting HRV Trends 2b. HRV Baseline Trends & CV 3. Tags & Correlations 4. Ectopic beats & motion artifacts 5. HRV4Training Insights 6. HRV4Training & Sports Science 7. HRV & fitness / training load 8. HRV & performance 9. VO2max models 10. Repeated HRV measurements 11. VO2max and performance 12. HR, HRV and performance 13. Training intensity & performance 14. Publication: VO2max & running performance 15. Estimating running performance 16. Coefficient of Variation 17. More on CV and the big picture 18. Case study marathon training 19. Case study injury and lifestyle stress 20. HRV and menstrual cycle 21. Cardiac decoupling 22. FTP, lactate threshold, half and full marathon time estimates 23. Training Monotony Camera & Sensors 1. ECG vs Polar & Mio Alpha 2a. Camera vs Polar 2b. Camera vs Polar iOS10 2c. iPhone 7+ vs Polar 2d. Comparison of PPG sensors 3. Camera measurement guidelines 4. Validation paper 5. Android camera vs Chest strap 6. Scosche Rhythm24 7. Apple Watch 8. CorSense 9. Samsung Galaxy App Features 1. Features and Recovery Points 2. Daily advice 3. HRV4Training insights 4. Sleep tracking 5. Training load analysis 6a. Integration with Strava 6b. Integration with TrainingPeaks 6c. Integration with SportTracks 6d. Integration with Genetrainer 6e. Integration with Apple Health 6f. Integration with Todays Plan 7. Acute HRV changes by sport 8. Remote tags in HRV4T Coach 9. VO2max Estimation 10. Acute stressors analysis 11. Training Polarization 12. Lactate Threshold Estimation 13. Functional Threshold Power(FTP) Estimation for cyclists 14. Aerobic Endurance analysis 15. Intervals Analysis 16. Training Planning 17. Integration with Oura 18. Aerobic efficiency and cardiac decoupling Other 1. HRV normal values 2. HRV normalization by HR 3. HRV 101 |