HRV4Training
  • Home
  • QuickStart Guide
  • PRO & TEAMS
  • FAQ
  • Privacy & Terms
  • Contact
  • Publications
  • Blog
  • Shop

Training load analysis update: acute to chronic ratio & injury risk

12/8/2016

0 Comments

 
B​log post by Marco Altini
This is a short post to highlight some changes to the training load analysis that you can find under Insights in HRV4Training. In particular, we re-worked the last plot of the page, the one showing injury risk, to better reflect current state of the art models used to determine injury risk for endurance athletes as well as teams. We now report the acute to chronic ratio and a few thresholds (color-coded) that highlight which ratios are optimal and which ratios should trigger more caution. 

For more details on the training load features, please refer to our previous post where we explain the Banister model and reference to a few other articles that explain very well the theory behind computing chronic and acute training loads as markers of fitness and fatigue.

Initially, we used the difference between chronic and acute training loads to compute injury risk, however the model based on the difference suffers from a few shortcomings: units are arbitrary and change based on the training impulse units, making it difficult to compare or standardize risks (e.g. using thresholds that we can all share and learn from), and is also less readable than the ratio.

The acute to chronic training load ratio has been used a lot recently to estimate injury risk, especially by Tim Gabbett (please check out this article for a comprehensive analysis by Tim). Similarly to any other aspect of training load monitoring and performance optimization, there is no one size fits all and many parameters need to be considered. However, the acute to chronic ratio can be a valuable tool to keep things under control and make sure we do not introduce too much acute load based on our recent chronic load.

The new analysis is available in both HRV4Training and HRV4Training Coach, see two screenshots below:
Picture
Picture
Picture
Picture
Picture
What you can see above is an optimal area in which training load should be, in order to trigger positive adaptations (this is a ratio of approximately 0.8 to 1.3). A lower ratio, white area, would cause loss of fitness, as basically there is not enough training. An higher ratio, would instead increase injury risk, as it means we are training too much with respect to what we are used to take. We show two "higher risk areas", one between 1.3 and 1.75 in yellow and one above 1.75 in orange. 

The new feature will be available by mid December, 2016. We hope you'll find it useful in better managing your training load.
0 Comments

Your comment will be posted after it is approved.


Leave a Reply.

    Picture
    Picture
    Register to the mailing list
    and try the HRV4Training app!
    Picture
    Picture
    This blog is curated by
    Marco Altini, founder of HRV4Training


    ​Blog Index
    ​
    The Ultimate Guide to HRV
    1: Measurement setup
    2: Interpreting your data
    3: Case studies and practical examples

    How To
    1. Intro to HRV
    ​2. How to use HRV, the basics
    3. HRV guided training
    ​4. HRV and training load
    ​
    5. HRV, strength & power
    6. Overview in HRV4Training Pro​
    7. HRV in team sports
    ​

    HRV Measurements
    Best Practices

    1. Context & Time of the Day
    2. Duration
    ​
    3. Paced breathing
    4. Orthostatic Test
    5. Slides HRV overview
    6. Normal values and historical data
    ​7. HRV features
    ​
    Data Analysis
    1a. Acute Changes in HRV
    (individual level)

    1b. Acute Changes in HRV (population level)
    ​
    1c. Acute Changes in HRV & measurement consistency
    1d. Acute Changes in HRV in endurance and power sports​
    2a. Interpreting HRV Trends
    2​b. HRV Baseline Trends & CV
    3. ​Tags & Correlations​
    4. Ectopic beats & motion artifacts
    5. HRV4Training Insights
    6. HRV4Training & Sports Science
    7. HRV & fitness / training load
    ​8. HRV & performance
    9. VO2max models
    10. Repeated HRV measurements
    11. VO2max and performance
    12. HR, HRV and performance
    13. Training intensity & performance​
    14. Publication: VO2max & running performance
    ​
    15. Estimating running performance
    16. Coefficient of Variation
    17. More on CV and the big picture
    ​​​​​18. Case study marathon training
    19. Case study injury and lifestyle stress
    20. HRV and menstrual cycle
    21. Cardiac decoupling
    22. FTP, lactate threshold, half and full marathon time estimates
    ​23. Training Monotony
    ​
    Camera & Sensors
    1. ECG vs Polar & Mio Alpha
    2a. Camera vs Polar
    2b. Camera vs Polar iOS10
    2c. iPhone 7+ vs Polar
    2d. Comparison of PPG sensors
    3. Camera measurement guidelines
    4. Validation paper
    ​5. Android camera vs Chest strap
    ​6. Scosche Rhythm24
    ​7. Apple Watch
    8. CorSense
    ​
    9. Samsung Galaxy
    ​
    App Features
    ​1. Features and Recovery Points
    2. Daily advice
    3. HRV4Training insights
    4. Sleep tracking
    5. Training load analysis
    ​6a. Integration with Strava
    6b. Integration with TrainingPeaks
    6c. Integration with SportTracks
    6d. Integration with Genetrainer
    ​
    6e. Integration with Apple Health
    ​
    ​6f. Integration with Todays Plan
    7. Acute HRV changes by sport
    8. Remote tags in HRV4T Coach
    9. VO2max Estimation
    ​
    10. Acute stressors analysis
    11. Training Polarization
    ​
    12. Lactate Threshold Estimation
    13. Functional Threshold Power(FTP) Estimation for cyclists
    14. Aerobic Endurance analysis
    15. Intervals Analysis
    ​​​16. Training Planning
    17. Integration with Oura
    18. Aerobic efficiency and cardiac decoupling
    ​
    Other
    1. HRV normal values​
    ​2. HRV normalization by HR
    ​
    3. HRV 101

    RSS Feed

Picture
  • Home
  • QuickStart Guide
  • PRO & TEAMS
  • FAQ
  • Privacy & Terms
  • Contact
  • Publications
  • Blog
  • Shop