HRV4Training
  • Home
  • QuickStart Guide
  • PRO & TEAMS
  • FAQ
  • Privacy & Terms
  • Contact
  • Publications
  • Blog
  • Shop

Recap of our latest paper, part 2

12/6/2021

 
Blog post by Marco Altini

In the second part of our latest paper, we analyzed individual stress responses to:
  • Training
  • Menstrual cycle
  • Sickness
  • Alcohol intake

Using 1 year of data per person, for 28 000 people. This is in my view the most interesting part of the paper

Why?
Picture
This type of analysis allows us to answer important questions:

Can a morning measurement capture individual stress responses effectively?

Is it worth the trouble to look at HRV, or is HR enough?

​What is the difference between the two, when it comes to stress responses?

Data collection

Measurements and annotations (training intensities, sickness, etc.) were collected using HRV4Training, first thing in the morning Most measurements were taken with the phone camera (validation here).

Let's quickly look at our analysis framework first. How do we analyze individual stress responses? For each person, any given day there will be many stressors. However, if we take hundreds of days of data per person, and look at one stressor at a time, we can isolate the stressor and better understand its impact on resting physiology.

Picture

What did we learn?

Training intensity

​Below are the results for training intensity (low vs high-intensity days). The change in HRV is 4.6% while for heart rate is 1.3% (with respect to a person's average). HRV is therefore more sensitive to this stressor.

The change in HRV does not reduce across age groups, indicating how HRV captures training stress equally well for older individuals, while the change in HR reduces. Additionally, women tend to have a less marked response (more about this later)


Picture
We also split the annotated intensity into four categories, as shown below. Once again we can see how HRV is more sensitive to changes in training intensity, but also how these measurements capture very well self-reported training intensities:
Picture

Menstrual cycle

The change in heart rate was 1.6% between the follicular and the luteal phases, while the change in HRV was 3.2%. Once again, HRV is more sensitive. These differences might also be the reason why other stressors show somewhat less marked responses in women.
Picture

Alcohol intake

Changes in alcohol intake are 3-4 times larger than changes due to training or the menstrual cycle (6% change in heart rate and 12% change in HRV).
Picture

Sickness

Not surprisingly, sickness is also a very strong stressor, similarly to alcohol intake (6% change in heart rate and 10% change in HRV).
Picture

What are the implications?

When using HRV for training guidance, lifestyle is key, and poor lifestyle or health issues will take over.

A holistic approach to health and performance is needed.

Strength of the stressor

To recap, changes due to training intensity and the menstrual cycle are typically 3-4 times smaller than changes due to sickness or alcohol intake.

Changes in HRV are 2-4 times larger than changes in heart rate in response to the same stressors.

Interpretability

When we contextualize the percentage changes reported in this paper with what we know from literature, e.g. that the smallest practical or meaningful change in heart rate is 2% and in HRV is 3%, we can see how changes in heart rate are below this threshold, and therefore smaller than normal day to day variability.

This means that heart rate is not sensitive enough unless we have very strong stressors (e.g. alcohol intake or sickness). This also means that while HRV is more sensitive, it is also less specific, as shown by the typically smaller effect sizes.

​In other words: changes in heart rate are often of no practical utility (smaller than daily variability). On the other hand, higher stress will be reflected on HRV data no matter where it comes from and it might be difficult to get to the source (context is key).

We speculate that these findings might lead to new forms of HRV-guided training, where rest days are prescribed based on large changes in HR (as these capture only very strong stressors), while training intensity is modulated based on more subtle HRV responses.

You can find the full text of the paper, here.


​Thank you for reading

Comments are closed.
    Picture
    Picture
    Register to the mailing list
    and try the HRV4Training app!
    Picture
    Picture
    This blog is curated by
    Marco Altini, founder of HRV4Training


    ​Blog Index
    ​
    The Ultimate Guide to HRV
    1: Measurement setup
    2: Interpreting your data
    3: Case studies and practical examples

    How To
    1. Intro to HRV
    ​2. How to use HRV, the basics
    3. HRV guided training
    ​4. HRV and training load
    ​
    5. HRV, strength & power
    6. Overview in HRV4Training Pro​
    7. HRV in team sports
    ​

    HRV Measurements
    Best Practices

    1. Context & Time of the Day
    2. Duration
    ​
    3. Paced breathing
    4. Orthostatic Test
    5. Slides HRV overview
    6. Normal values and historical data
    ​7. HRV features
    ​
    Data Analysis
    1a. Acute Changes in HRV
    (individual level)

    1b. Acute Changes in HRV (population level)
    ​
    1c. Acute Changes in HRV & measurement consistency
    1d. Acute Changes in HRV in endurance and power sports​
    2a. Interpreting HRV Trends
    2​b. HRV Baseline Trends & CV
    3. ​Tags & Correlations​
    4. Ectopic beats & motion artifacts
    5. HRV4Training Insights
    6. HRV4Training & Sports Science
    7. HRV & fitness / training load
    ​8. HRV & performance
    9. VO2max models
    10. Repeated HRV measurements
    11. VO2max and performance
    12. HR, HRV and performance
    13. Training intensity & performance​
    14. Publication: VO2max & running performance
    ​
    15. Estimating running performance
    16. Coefficient of Variation
    17. More on CV and the big picture
    ​​​​​18. Case study marathon training
    19. Case study injury and lifestyle stress
    20. HRV and menstrual cycle
    21. Cardiac decoupling
    22. FTP, lactate threshold, half and full marathon time estimates
    ​23. Training Monotony
    ​
    Camera & Sensors
    1. ECG vs Polar & Mio Alpha
    2a. Camera vs Polar
    2b. Camera vs Polar iOS10
    2c. iPhone 7+ vs Polar
    2d. Comparison of PPG sensors
    3. Camera measurement guidelines
    4. Validation paper
    ​5. Android camera vs Chest strap
    ​6. Scosche Rhythm24
    ​7. Apple Watch
    8. CorSense
    ​
    9. Samsung Galaxy
    ​
    App Features
    ​1. Features and Recovery Points
    2. Daily advice
    3. HRV4Training insights
    4. Sleep tracking
    5. Training load analysis
    ​6a. Integration with Strava
    6b. Integration with TrainingPeaks
    6c. Integration with SportTracks
    6d. Integration with Genetrainer
    ​
    6e. Integration with Apple Health
    ​
    ​6f. Integration with Todays Plan
    7. Acute HRV changes by sport
    8. Remote tags in HRV4T Coach
    9. VO2max Estimation
    ​
    10. Acute stressors analysis
    11. Training Polarization
    ​
    12. Lactate Threshold Estimation
    13. Functional Threshold Power(FTP) Estimation for cyclists
    14. Aerobic Endurance analysis
    15. Intervals Analysis
    ​​​16. Training Planning
    17. Integration with Oura
    18. Aerobic efficiency and cardiac decoupling
    ​
    Other
    1. HRV normal values​
    ​2. HRV normalization by HR
    ​
    3. HRV 101

    RSS Feed

Picture
  • Home
  • QuickStart Guide
  • PRO & TEAMS
  • FAQ
  • Privacy & Terms
  • Contact
  • Publications
  • Blog
  • Shop