HRV4Training
  • Home
  • QuickStart Guide
  • PRO & TEAMS
  • FAQ
  • Privacy & Terms
  • Contact
  • Publications
  • Blog
  • Shop

Half marathon and full marathon time estimation in HRV4Training Pro

8/29/2018

 
Blog post by Marco Altini

​
We have just released our latest feature in HRV4Training Pro: half marathon and full marathon running time estimates. In this post we go over how these prediction models work.
Picture
In particular, this work is an extension of our previously published analysis (see "Estimating running performance combining non-invasive physiological measurements and training patterns in free-living” which was accepted for publication at the 40th International Engineering in Medicine and Biology Conference, full text here, while another blog post explaining the paper can be found here).
Picture

In the published work we built models able to estimate running performance (10 km time) using 2 years of real world data from more than 2000 individuals, including morning physiological measurements obtained using HRV4Training, workouts acquired from Strava and TrainingPeaks, anthropometrics and training patterns.

What did we learn?

We provided insights on the relationship between training and performance, including further evidence of the importance of training volume and a polarized training approach to improve performance.

While no causal link can be established, as users did not participate in an intervention, it is of interest to determine the impact of features representative of training patterns as derived from workouts, for example training polarization, a hot topic these days. In our analysis, age, BMI, resting HR, speed to HR ratio and time spent at moderate HR intensity entered the model with a positive sign, meaning that a lower value for these predictors is associated with a faster 10 km. On the other hand, HRV (rMSSD), average distance and speed, percentage of workouts performed 5% faster or 5% slower than the average training entered the model with a negative coefficient. Thus, according to our dataset and analysis, a more polarized training regime, with a higher percentage of workouts preformed either faster or slower than the average workout, as well as a lower percentage of workouts performed at moderate HR intensity, is associated with improved performance.
Picture

Lactate threshold estimation in HRV4Training ​


​Following our analysis, earlier this year we have released a new feature in HRV4Training, lactate threshold estimation (more on this at this link), basically turning around the modeling detailed in this post and published in the paper.

In practical terms, the lactate or anaerobic threshold, is approximately the pace you should be able to hold for a distance between 10 and 15 km. This is the criteria used in HRV4Training, which should help you making sense of the app estimation.


Intuitively, knowing your lactate threshold can help you defining pacing strategies for racing events between the 5 km and the half marathon (or longer, but in that case, other factors such as training volume start to play a more important role), as well as determining training pace for intervals and tempo runs. Some useful insights in this context are provided by Greg McMillan in this article, that I’d recommend checking out.

Estimating running time


​As mentioned at the beginning of this article, we have now added new models to estimate half marathon and full marathon times, based on a similar analysis, and the following parameters:
  • Resting measurements of cardiac activity (heart rate and heart rate variability).
  • Physiological data during training (for example the running pace to heart rate ratio, that we described in our VO2max estimation paper).
  • Training pace and volume.
  • Training patterns (for example training polarization, or time spent at low or high intensities vs time spent at moderate intensities, as well as time spent at different speeds).
  • Previous running performance (automatically derived from racing events or hard intervals workouts).
  • Estimated VO2max.
  • Long runs (number and frequency) .
Picture
You will see a different degree of confidence on the models, as we try to move away from ‘exact’ estimates, as there is no such a thing and all models include an error, to provide you with a range of most likely values that can help you, given your knowledge of your workouts and physical condition, getting a realistic understanding of what racing times could be possible based on the available data (R2 was above 0.85 for both models). This is what you see below as optimistic and pessimistic values.

In addition, the models differ as the full marathon estimation model highly relies on the presence long runs among your workouts, an aspect often forgotten by other estimators, and which we believe is key to performance in long distance events.
Picture
Below you can see another example, we hope you’ll find the new feature useful.
Picture

Comments are closed.
    Picture
    Picture
    Register to the mailing list
    and try the HRV4Training app!
    Picture
    Picture
    This blog is curated by
    Marco Altini, founder of HRV4Training


    ​Blog Index
    ​
    The Ultimate Guide to HRV
    1: Measurement setup
    2: Interpreting your data
    3: Case studies and practical examples

    How To
    1. Intro to HRV
    ​2. How to use HRV, the basics
    3. HRV guided training
    ​4. HRV and training load
    ​
    5. HRV, strength & power
    6. Overview in HRV4Training Pro​
    7. HRV in team sports
    ​

    HRV Measurements
    Best Practices

    1. Context & Time of the Day
    2. Duration
    ​
    3. Paced breathing
    4. Orthostatic Test
    5. Slides HRV overview
    6. Normal values and historical data
    ​7. HRV features
    ​
    Data Analysis
    1a. Acute Changes in HRV
    (individual level)

    1b. Acute Changes in HRV (population level)
    ​
    1c. Acute Changes in HRV & measurement consistency
    1d. Acute Changes in HRV in endurance and power sports​
    2a. Interpreting HRV Trends
    2​b. HRV Baseline Trends & CV
    3. ​Tags & Correlations​
    4. Ectopic beats & motion artifacts
    5. HRV4Training Insights
    6. HRV4Training & Sports Science
    7. HRV & fitness / training load
    ​8. HRV & performance
    9. VO2max models
    10. Repeated HRV measurements
    11. VO2max and performance
    12. HR, HRV and performance
    13. Training intensity & performance​
    14. Publication: VO2max & running performance
    ​
    15. Estimating running performance
    16. Coefficient of Variation
    17. More on CV and the big picture
    ​​​​​18. Case study marathon training
    19. Case study injury and lifestyle stress
    20. HRV and menstrual cycle
    21. Cardiac decoupling
    22. FTP, lactate threshold, half and full marathon time estimates
    ​23. Training Monotony
    ​
    Camera & Sensors
    1. ECG vs Polar & Mio Alpha
    2a. Camera vs Polar
    2b. Camera vs Polar iOS10
    2c. iPhone 7+ vs Polar
    2d. Comparison of PPG sensors
    3. Camera measurement guidelines
    4. Validation paper
    ​5. Android camera vs Chest strap
    ​6. Scosche Rhythm24
    ​7. Apple Watch
    8. CorSense
    ​
    9. Samsung Galaxy
    ​
    App Features
    ​1. Features and Recovery Points
    2. Daily advice
    3. HRV4Training insights
    4. Sleep tracking
    5. Training load analysis
    ​6a. Integration with Strava
    6b. Integration with TrainingPeaks
    6c. Integration with SportTracks
    6d. Integration with Genetrainer
    ​
    6e. Integration with Apple Health
    ​
    ​6f. Integration with Todays Plan
    7. Acute HRV changes by sport
    8. Remote tags in HRV4T Coach
    9. VO2max Estimation
    ​
    10. Acute stressors analysis
    11. Training Polarization
    ​
    12. Lactate Threshold Estimation
    13. Functional Threshold Power(FTP) Estimation for cyclists
    14. Aerobic Endurance analysis
    15. Intervals Analysis
    ​​​16. Training Planning
    17. Integration with Oura
    18. Aerobic efficiency and cardiac decoupling
    ​
    Other
    1. HRV normal values​
    ​2. HRV normalization by HR
    ​
    3. HRV 101

    RSS Feed

Picture
  • Home
  • QuickStart Guide
  • PRO & TEAMS
  • FAQ
  • Privacy & Terms
  • Contact
  • Publications
  • Blog
  • Shop