HRV4Training
  • Home
  • QuickStart Guide
  • PRO & TEAMS
  • FAQ
  • Privacy & Terms
  • Contact
  • Publications
  • Blog
  • Shop

CorSense

11/9/2018

 
Blog post by Marco Altini

​
As previously reported we have added support for the CorSense sensor by Elite HRV.

CorSense is a sensor you can use rather than a cheststrap, and it is compatible with most Apple iOS and Android OS devices.


In this post, we'll show a few minutes of data collected under different conditions, highlighting how the sensor is very accurate in detecting RR intervals and can therefore be used reliably for HRV analysis.
Picture

​Data collection

Data was acquired using the CorSense sensor and a Polar H7 (previously validated with respect to ECG here), both connected to a different device running the HRV Logger app, which is an app that simply records everything coming from the sensor plus additional features. 

During data acquisition, we collected data a few minutes while breathing freely, and a few minutes while deep breathing, to elicitate higher HRV due to RSA. You will see in the plots below visually the effect of deep breathing as we get greater swings in RR intervals.

A final note on data synchronization: data cannot be perfectly synchronized because it is not timestamped by the sensors. What we can do is either to log real time and then to split data in windows based on when data was collected, then compute HRV features on these windows or to sum up RR intervals over time. For this analysis we went with the second option and also tried to visually align the data streams.
Picture

​RR intervals

We will start by looking at RR intervals, the basic unit we need to compute HRV features. RR intervals (peak to peak differences in consecutive heart beats) are provided by the two sensors directly, so we don't really need to do much to collect them, apart from linking the sensor to the HRV Logger app and export the csv files.
Picture
​What can we derive from these data? You can see clearly  almost perfect correlation between Polar H7 and CorSense for all conditions (relaxed vs paced breathing as highlighted by bigger oscillations in RR intervals or instantaneous heart rate), meaning that the sensor works really well in this modality.

​Heart rate variability: rMSSD

As features, we will look only at rMSSD, the only feature we really care about. rMSSD is a clear marker of parasympathetic activity and the main feature we use for our analysis in HRV4Training, similarly to what other apps do as well. Additionally, the sports science community seems to have settled on this feature for several reasons (practical as well as it is easy to acquire, compute and reliable over short time windows and less controlled conditions), and therefore we'll stick to it.

What we expect given the data above is to see extremely close values between the Polar H7 chest strap and CorSense data.

For the plot below, I computed rMSSD for each time window (60 seconds in this case):
Picture
Results are very good considering normal variation in physiology and limitations in data synchronization. ​

​Summary and other useful resources

That's all for this post. We are very pleased to see more and more sensors manufacturers spending time to work on 'HRV modalities' in which accurate RR intervals are sent via standard protocols, and hope that more will come in the future, making it easier for users to gather reliable data. Elite HRV did great work on the CorSense, as shown in the plots reported in this blog post.

Some additional resources:
  • Comparison of other PPG sensors
  • Normal variation in repeated measures in physiology
  • A discussion on paced breathing and HRV analysis
  • Scosche Rhythm 24

Comments are closed.
    Picture
    Picture
    Register to the mailing list
    and try the HRV4Training app!
    Picture
    Picture
    This blog is curated by
    Marco Altini, founder of HRV4Training


    ​Blog Index
    ​
    The Ultimate Guide to HRV
    1: Measurement setup
    2: Interpreting your data
    3: Case studies and practical examples

    How To
    1. Intro to HRV
    ​2. How to use HRV, the basics
    3. HRV guided training
    ​4. HRV and training load
    ​
    5. HRV, strength & power
    6. Overview in HRV4Training Pro​
    7. HRV in team sports
    ​

    HRV Measurements
    Best Practices

    1. Context & Time of the Day
    2. Duration
    ​
    3. Paced breathing
    4. Orthostatic Test
    5. Slides HRV overview
    6. Normal values and historical data
    ​7. HRV features
    ​
    Data Analysis
    1a. Acute Changes in HRV
    (individual level)

    1b. Acute Changes in HRV (population level)
    ​
    1c. Acute Changes in HRV & measurement consistency
    1d. Acute Changes in HRV in endurance and power sports​
    2a. Interpreting HRV Trends
    2​b. HRV Baseline Trends & CV
    3. ​Tags & Correlations​
    4. Ectopic beats & motion artifacts
    5. HRV4Training Insights
    6. HRV4Training & Sports Science
    7. HRV & fitness / training load
    ​8. HRV & performance
    9. VO2max models
    10. Repeated HRV measurements
    11. VO2max and performance
    12. HR, HRV and performance
    13. Training intensity & performance​
    14. Publication: VO2max & running performance
    ​
    15. Estimating running performance
    16. Coefficient of Variation
    17. More on CV and the big picture
    ​​​​​18. Case study marathon training
    19. Case study injury and lifestyle stress
    20. HRV and menstrual cycle
    21. Cardiac decoupling
    22. FTP, lactate threshold, half and full marathon time estimates
    ​23. Training Monotony
    ​
    Camera & Sensors
    1. ECG vs Polar & Mio Alpha
    2a. Camera vs Polar
    2b. Camera vs Polar iOS10
    2c. iPhone 7+ vs Polar
    2d. Comparison of PPG sensors
    3. Camera measurement guidelines
    4. Validation paper
    ​5. Android camera vs Chest strap
    ​6. Scosche Rhythm24
    ​7. Apple Watch
    8. CorSense
    ​
    9. Samsung Galaxy
    ​
    App Features
    ​1. Features and Recovery Points
    2. Daily advice
    3. HRV4Training insights
    4. Sleep tracking
    5. Training load analysis
    ​6a. Integration with Strava
    6b. Integration with TrainingPeaks
    6c. Integration with SportTracks
    6d. Integration with Genetrainer
    ​
    6e. Integration with Apple Health
    ​
    ​6f. Integration with Todays Plan
    7. Acute HRV changes by sport
    8. Remote tags in HRV4T Coach
    9. VO2max Estimation
    ​
    10. Acute stressors analysis
    11. Training Polarization
    ​
    12. Lactate Threshold Estimation
    13. Functional Threshold Power(FTP) Estimation for cyclists
    14. Aerobic Endurance analysis
    15. Intervals Analysis
    ​​​16. Training Planning
    17. Integration with Oura
    18. Aerobic efficiency and cardiac decoupling
    ​
    Other
    1. HRV normal values​
    ​2. HRV normalization by HR
    ​
    3. HRV 101

    RSS Feed

Picture
  • Home
  • QuickStart Guide
  • PRO & TEAMS
  • FAQ
  • Privacy & Terms
  • Contact
  • Publications
  • Blog
  • Shop