HRV4Training
  • Home
  • QuickStart Guide
  • PRO & TEAMS
  • FAQ
  • Privacy & Terms
  • Contact
  • Publications
  • Guides
  • Blog
  • Shop

Color-coded correlation analysis in HRV4Training Pro

7/28/2020

 
Blog post by Marco Altini

​
We have just released an improvement to the correlations analysis in HRV4Training Pro, which now adds color coding to make it easier to spot stronger relationships between your annotated tags and your physiological data.

​You can try the new feature on HRV4Training Pro for free at this link, or use code SCIENCE for 15% off any package.

What are correlations about?

Citing Wikipedia: ​"Correlation refers to any of a broad class of statistical relationships involving dependence. Familiar examples of dependent phenomena include the correlation between the physical statures of parents and their offspring, and the correlation between the demand for a product and its price. Correlations are useful because they can indicate a predictive relationship that can be exploited in practice."

In other words, looking at correlations can help us to pinpoint which parameters have a stronger impact on our physiology, and potentially make adjustments (e.g. if there is a strong negative correlation between work stress and HRV, maybe we should try to reduce work stress). 

How should I configure this analysis?

The correlation analysis in HRV4Training Pro lets you pick any timeframe between 30 days and 2 years. However, in general, we think that using a time frame between 60 and 90 days is ideal. 

Why  is that? Most likely the stressors you face will change over time, and similarly your response to certain stressors will change, therefore we believe it can be more helpful to look at these relationships in the relatively short time frame (e.g. 60-90 days), to get a better idea of what factors are influencing your physiology the most. Shorter windows (e.g. 30 days) might not have enough data, unless some really large stressor was present (for example if you go from sea level to 2000m / 6000ft of altitude, then you will certainly see a strong correlation between resting heart rate and altitude), otherwise it might be better to extend the window. On the other hand, longer windows (e.g. a whole year) might fail to capture more complex, multidimensional relationships between various training and lifestyle aspects, and your physiology.  

Finally, we would recommend to look at baseline correlations, more than day-to-day correlations. Baseline correlations are computed on the 7 days moving average of each variable, and therefore provide a more stable trend of the data. Typically, this is more insightful than to look at the individual data points, especially in the longer term.

Below you can seen an example:
  • Negative correlations are shown in yellow. Remember that negative means that for example your HRV goes up while the other parameter goes down. It does not mean that this is a bad thing! If you have a negative relationship between life stress and HRV it simply means that your HRV goes up when  your life stress goes down, as show here for my own data.
  • Positive correlations are shown in blue, in this case a higher HRV is associated with a higher value for a given parameter, for example mental energy in my case
Picture

and here is the actual data for the strongest correlation in my data, which is 'lifestyle stress', a tag I use to represent work-related stress:
Picture
The important part after you start looking at these correlations, is not to jump to conclusions. For example, it could be that the relation you are seeing is actually caused by another variable excluded by the analysis. However, this can be a useful starting point to explore your data, and we hope the new color-coding will make it a bit easier.

Enjoy

Comments are closed.
    Picture
    Picture
    Register to the mailing list
    and try the HRV4Training app!
    Picture
    Picture
    This blog is curated by
    Marco Altini, founder of HRV4Training


    ​Blog Index
    ​
    The Ultimate Guide to HRV
    1: Measurement setup
    2: Interpreting your data
    3: Case studies and practical examples

    How To
    1. Intro to HRV
    ​2. How to use HRV, the basics
    3. HRV guided training
    ​4. HRV and training load
    ​
    5. HRV, strength & power
    6. Overview in HRV4Training Pro​
    7. HRV in team sports
    ​

    HRV Measurements
    Best Practices

    1. Context & Time of the Day
    2. Duration
    ​
    3. Paced breathing
    4. Orthostatic Test
    5. Slides HRV overview
    6. Normal values and historical data
    ​7. HRV features
    ​
    Data Analysis
    1a. Acute Changes in HRV
    (individual level)

    1b. Acute Changes in HRV (population level)
    ​
    1c. Acute Changes in HRV & measurement consistency
    1d. Acute Changes in HRV in endurance and power sports​
    2a. Interpreting HRV Trends
    2​b. HRV Baseline Trends & CV
    3. ​Tags & Correlations​
    4. Ectopic beats & motion artifacts
    5. HRV4Training Insights
    6. HRV4Training & Sports Science
    7. HRV & fitness / training load
    ​8. HRV & performance
    9. VO2max models
    10. Repeated HRV measurements
    11. VO2max and performance
    12. HR, HRV and performance
    13. Training intensity & performance​
    14. Publication: VO2max & running performance
    ​
    15. Estimating running performance
    16. Coefficient of Variation
    17. More on CV and the big picture
    ​​​​​18. Case study marathon training
    19. Case study injury and lifestyle stress
    20. HRV and menstrual cycle
    21. Cardiac decoupling
    22. FTP, lactate threshold, half and full marathon time estimates
    ​23. Training Monotony
    ​
    Camera & Sensors
    1. ECG vs Polar & Mio Alpha
    2a. Camera vs Polar
    2b. Camera vs Polar iOS10
    2c. iPhone 7+ vs Polar
    2d. Comparison of PPG sensors
    3. Camera measurement guidelines
    4. Validation paper
    ​5. Android camera vs Chest strap
    ​6. Scosche Rhythm24
    ​7. Apple Watch
    8. CorSense
    ​
    9. Samsung Galaxy
    ​
    App Features
    ​1. Features and Recovery Points
    2. Daily advice
    3. HRV4Training insights
    4. Sleep tracking
    5. Training load analysis
    ​6a. Integration with Strava
    6b. Integration with TrainingPeaks
    6c. Integration with SportTracks
    6d. Integration with Genetrainer
    ​
    6e. Integration with Apple Health
    ​
    ​6f. Integration with Todays Plan
    7. Acute HRV changes by sport
    8. Remote tags in HRV4T Coach
    9. VO2max Estimation
    ​
    10. Acute stressors analysis
    11. Training Polarization
    ​
    12. Lactate Threshold Estimation
    13. Functional Threshold Power(FTP) Estimation for cyclists
    14. Aerobic Endurance analysis
    15. Intervals Analysis
    ​​​16. Training Planning
    17. Integration with Oura
    18. Aerobic efficiency and cardiac decoupling
    ​
    Other
    1. HRV normal values​
    ​2. HRV normalization by HR
    ​
    3. HRV 101

    RSS Feed

Picture
  • Home
  • QuickStart Guide
  • PRO & TEAMS
  • FAQ
  • Privacy & Terms
  • Contact
  • Publications
  • Guides
  • Blog
  • Shop