Blog post by Marco Altini Inspired by the different analysis that our users started putting together to investigate the effect of various stressors (training, travel, alcohol intake, etc.) on their HR and HRV we redesigned the Acute HRV Changes analysis Insight. Instead of looking only at day to day variations following training (is your HRV reduced after more intense workouts?) we will let you pick different parameters and explore day to day (acute) variations not only with respect to training but also for alcohol intake, travel, sick days and menstrual cycle. This way you'll be able to analyze more systematically over periods of 3 months how your body is responding to these different stressors, instead of only looking at them anecdotally from the history page. The new acute HRV changes analysis will be available in about a week. What's an acute change anyways?We talked about acute HRV changes a couple of times already. Acute stressors are events that affect your physiology in the immediate future. Think about an intense aerobic workout, an intercontinental flight, a night out with too many drinks, high caffeine intake, etc. Acute stressors are typically the easiest phenomena to interpret and reproduce, and looking at data in the context of acute stressors can help understanding how your physiology works. Looking at acute changes can also help in gaining confidence in the tools we use, as these changes should be captured more easily. Check out this post for some examples from our users, or this tweet, the latest example I could find. In the past we focused much on acute changes in response to training, which we also published in our first paper, however we wanted to provide you with a better way to explore your data and annotations, hence the redesign of this feature. It's important also to remember that physiology is complex, and while acute HRV changes are often repeatable and easy to understand, there might be other factors behind the relationships that we are seeing (or not seeing) in our data. How does it work?In the new Acute HRV Changes analysis you will be able to look at acute changes in two different ways. For certain stressors, which have an impact on the following day physiology (e.g. alcohol intake or a workout), we will show you the difference in HRV between "today" (stressor day) and "tomorrow" (day after the stressor), averaged over three months of data. Did your HRV decrease after a certain event? By how much? Is this decrease consistent? That's what you will be able to see for training (rest vs training as well as different annotated intensities) and alcohol intake. On the other hand, some stressors last for several days (for example getting sick, menstruation and travel). For these stressors we will not look at day to day changes but at the average HR or HRV values in the two conditions. What's your normal HR? Does it change when sick? Hopefully, this is clear, otherwise you just need to wait a couple more days to play around with the update. See some additional screenshots below. HRV4Training CoachThe same feature is available also in HRV4Training Coach, where you will also be able to select different time frames, and analyze acute stressors for periods ranging between 30 to 90 days. For teams and coaches, you'll be able to run this analysis on all your athletes, as shown below for a few examples. We hope you'll enjoy the feature :) Comments are closed.
|
Register to the mailing list
and try the HRV4Training app! This blog is curated by
Marco Altini, founder of HRV4Training Blog Index The Ultimate Guide to HRV 1: Measurement setup 2: Interpreting your data 3: Case studies and practical examples How To 1. Intro to HRV 2. How to use HRV, the basics 3. HRV guided training 4. HRV and training load 5. HRV, strength & power 6. Overview in HRV4Training Pro 7. HRV in team sports HRV Measurements Best Practices 1. Context & Time of the Day 2. Duration 3. Paced breathing 4. Orthostatic Test 5. Slides HRV overview 6. Normal values and historical data 7. HRV features Data Analysis 1a. Acute Changes in HRV (individual level) 1b. Acute Changes in HRV (population level) 1c. Acute Changes in HRV & measurement consistency 1d. Acute Changes in HRV in endurance and power sports 2a. Interpreting HRV Trends 2b. HRV Baseline Trends & CV 3. Tags & Correlations 4. Ectopic beats & motion artifacts 5. HRV4Training Insights 6. HRV4Training & Sports Science 7. HRV & fitness / training load 8. HRV & performance 9. VO2max models 10. Repeated HRV measurements 11. VO2max and performance 12. HR, HRV and performance 13. Training intensity & performance 14. Publication: VO2max & running performance 15. Estimating running performance 16. Coefficient of Variation 17. More on CV and the big picture 18. Case study marathon training 19. Case study injury and lifestyle stress 20. HRV and menstrual cycle 21. Cardiac decoupling 22. FTP, lactate threshold, half and full marathon time estimates 23. Training Monotony Camera & Sensors 1. ECG vs Polar & Mio Alpha 2a. Camera vs Polar 2b. Camera vs Polar iOS10 2c. iPhone 7+ vs Polar 2d. Comparison of PPG sensors 3. Camera measurement guidelines 4. Validation paper 5. Android camera vs Chest strap 6. Scosche Rhythm24 7. Apple Watch 8. CorSense 9. Samsung Galaxy App Features 1. Features and Recovery Points 2. Daily advice 3. HRV4Training insights 4. Sleep tracking 5. Training load analysis 6a. Integration with Strava 6b. Integration with TrainingPeaks 6c. Integration with SportTracks 6d. Integration with Genetrainer 6e. Integration with Apple Health 6f. Integration with Todays Plan 7. Acute HRV changes by sport 8. Remote tags in HRV4T Coach 9. VO2max Estimation 10. Acute stressors analysis 11. Training Polarization 12. Lactate Threshold Estimation 13. Functional Threshold Power(FTP) Estimation for cyclists 14. Aerobic Endurance analysis 15. Intervals Analysis 16. Training Planning 17. Integration with Oura 18. Aerobic efficiency and cardiac decoupling Other 1. HRV normal values 2. HRV normalization by HR 3. HRV 101 |